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Abstract: Certain supersymmetric elementary string states with spin can be viewed as

small black rings whose horizon has the topology of S1×Sd−3 in a d-dimensional string the-

ory. By analyzing the singular black ring solution in the supergravity approximation, and

using various symmetries of the α′ corrected effective action we argue that the Bekenstein-

Hawking-Wald entropy of the black string solution in the full string theory agrees with

the statistical entropy of the same system up to an overall normalization constant. While

the normalization constant cannot be determined by the symmetry principles alone, it can

be related to a similar normalization constant that appears in the expression for small

black holes without angular momentum in one less dimension. Thus agreement between

statistical and macroscopic entropy of (d − 1)-dimensional non-rotating elementary string

states would imply a similar agreement for a d-dimensional elementary string state with

spin. Our analysis also determines the structure of the near horizon geometry and provides

us with a geometric derivation of the Regge bound. These studies give further evidence

that a ring-like horizon is formed when large angular momentum is added to a small black

hole.
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1. Introduction and summary

Recently, there has been great deal of progress in computing corrections to black hole

entropy due to the effect of higher derivative terms in string theory effective action and

comparing the answer to the statistical entropy of the same system [1 – 13]. A particularly

interesting class of examples is provided by the stringy ‘small’ black holes. These are

singular solutions of the classical supergravity equations of motion since they have vanishing

area of the event horizon. However microscopically they are described by BPS states of the

fundamental string and hence have non-zero degeneracies. A simple class of such examples

is provided by the FP system or the so-called Dabholkar-Harvey (DH) system [14], which

is obtained by winding a fundamental heterotic string −w times around a circle S1 and

putting n units of momentum along the same circle. If the right-movers are in the ground

state then such a state is BPS but it can carry arbitrary left-moving oscillations.1 Its

microscopic entropy is given by

Smicro = 4π
√

nw . (1.1)

Although in the supergravity approximation the corresponding solution has zero horizon

area and hence zero entropy, one expects that the result will be modified by the higher

derivative corrections since close to the (singular) horizon the curvature and other field

strengths become strong and the supergravity approximation is expected to break down.

However one finds that the string coupling constant near the horizon is small and hence one

1In the literature one often finds two different sets of conventions. The first one uses the convention that

for a BPS state the momentum and winding along S1 will have the same sign. The second one uses the

convention that for a BPS state the momentum and winding along S1 will have opposite sign. Here we are

using the second convention.
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need not worry about string loop corrections. By analyzing the behavior of the supergravity

solution near the horizon and using various symmetries of the full string tree level effective

action one finds that the α′-corrected entropy must have the form

C
√

nw , (1.2)

for some constant C [15 – 18]. However, the constant C cannot be calculated based on

symmetry principles alone. Recently for the special case of four dimensional small black

holes this constant was calculated in [9] using a special class of higher derivative terms in the

effective action and was found to give the value 4π in precise agreement with the microscopic

answer. Later it was demonstrated in [19 – 21] that other higher derivative corrections

do not change the result. Furthermore, it was shown that using special ensembles to

define entropy, the agreement between microscopic and macroscopic counting can be pushed

beyond the leading order to all orders in the large charge expansion [9, 22 – 24].

The next natural question is what will happen if we add angular momentum J to

the system. Studying microscopic states and making use of 4D-5D connection [25 – 30], it

was argued in [31] that if large angular momentum is added to a small black hole in five

dimensions with horizon topology S3, it will turn into a small black ring whose horizon

has topology of S1 × S2. The size of S2 is of the order of the string scale, and hence

is small compared with the typical horizon scales of ordinary supersymmetric black ring

solutions in [32 – 35] for which supergravity approximation is good. Furthermore, in [31], it

was shown that the entropy of small black rings can be related to that of four dimensional

small black holes,2 and that the entropy calculation based on this argument matches the

independent entropy calculation of the rotating DH system by Russo and Susskind [39]

(see also [40, 41, 25, 19, 42]).

Since a ring-like horizon is expected to show up for large J , it is interesting to study the

near horizon geometry of small black rings from a macroscopic, geometric point of view. In

particular we would like to know the J dependence of the horizon geometry. One would also

like to generalize the results to higher dimensions. These are the problems we shall address

in this paper. In particular we show that in arbitrary dimensions the supergravity equations

of motion admit a singular black ring solution carrying the same charge quantum numbers

as that of a rotating elementary string. This solution is characterized by the charges n and

w introduced earlier, the angular momentum J and a dipole charge Q that represents how

many times the fundamental string winds in the azimuthal directions. The microscopic

entropy of such a system can be easily computed from the spectrum of elementary string

states with spin and gives the answer

Sstat = 4π
√

nw − JQ . (1.3)

These states exist only for nw ≥ JQ, which can be regarded as the Regge bound for BPS

states. On the other hand since the supergravity solution is singular we cannot directly

calculate the macroscopic entropy. Nevertheless by examining the solution in a region of

low curvature, where supergravity approximation is expected to be valid, we find that the

2Using the fuzzball picture [36, 37] it was also argued in [38] that this system becomes a black ring.
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space-time associated with the solution develops closed time-like curves for nw < JQ [43].

Thus absence of such curves requires nw > JQ, thereby providing a geometric derivation

of the Regge bound.3 Furthermore, by using a symmetry argument very similar to that

in [15 – 18] we show that the entropy, if non-zero, is given by

SBH = C
√

nw − JQ , (1.4)

for some constant C. Furthermore C is the same constant that would appear in the expres-

sion (1.2) for the macroscopic entropy of a non-rotating black hole in one less dimension.

Thus agreement between microscopic and macroscopic entropy of a (d − 1)-dimensional

non-rotating small black hole would imply a similar agreement for d-dimensional rotating

small black rings. This analysis also determines the near horizon geometry in terms of

some unknown constants of order unity. In particular we can estimate the sizes of various

circles and spheres near the horizon.

The rest of the paper is organized as follows. In section 2 we briefly review the com-

putation of the statistical entropy of rotating elementary string states leading to the an-

swer (1.3). In section 3 we describe the supergravity solution describing the rotating small

black ring and study the effect of higher derivative corrections to this solution, eventually

arriving at the formula (1.4) for the black ring entropy. This analysis also determines the

dependence of the near horizon geometry on various charges in terms of some unknown

universal functions of the radial coordinate. In section 4 we use the entropy function for-

malism [45] and scaling arguments for the case of ring-like horizons, and show that the

results are consistent with the ones derived in section 3. This analysis determines the near

horizon geometry in terms of some unknown constants of order unity. We conclude in

section 5 with a discussion of our results and some open issues.

2. A brief review of the microscopic counting

Let us consider heterotic string theory in Rt × Rd−1 × S1 × T 9−d with 4 ≤ d ≤ 9 with

Rt × Rd−1 denoting d-dimensional Minkowski space. Our objects of interest are the BPS

elementary string excitations in this theory carrying n units of momentum and −w units of

winding charge along the circle S1 and angular momentum J in a two dimensional plane of

Rd−1. In the Ramond sector such states are obtained by acting with left-moving oscillators

of level N = nw + 1 on the Fock vacuum carrying charges (n,w). In the NS sector we also

need to act on the Fock vacuum by a right-moving fermionic oscillator of level 1/2. Let

x1 and x2 denote the coordinates of the two dimensional plane in which the state carries

angular momentum J . Then if we define x± = (x1 ± ix2)/
√

2 and denote by α±
−m the

corresponding oscillators of level m, then the quantum number J is given by the difference

between the number of α+
−m and the number of α−

−m oscillators acting on the Fock vacuum.

The statistical entropy is then given by the logarithm of the number of elementary string

states subject to the restriction that the number of α+
−m oscillators minus the number of

α−
−m oscillators acting on the Fock vacuum is precisely J .

3For oscillating string solutions describing string states with angular momentum, a derivation of the

Regge bound was given earlier in [44] by requiring regularity of the source terms in the equation of motion.
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In our analysis we shall examine a finer definition of the statistical entropy of rotating

elementary strings introduced in [46]. Let Q be a positive integer. Let us further assume,

for definiteness, that J is positive. We now count all states of the form

(α+
−Q)JO|vac〉 (2.1)

where O is an arbitrary combination of left-moving oscillators of level NO = nw−QJ + 1,

and |vac〉 denotes the Fock vacuum for Ramond sector states, and the Fock vacuum acted

on by a right-moving fermionic oscillator of level 1/2 for the NS sector states. The statistical

entropy of such states can be easily computed and gives the answer [46]

Sstat ' 4π
√

NO ' 4π
√

nw − JQ (2.2)

for large nw−JQ. Note that as defined, O can have any spin and hence the states which are

counted by this procedure do not have definite angular momentum. However the dominant

contribution to the entropy defined this way comes from the states for which O has spin

close to zero, i.e. states with spin close to J . Thus even if we restrict O to have total spin

zero the result for entropy would have the form given in (2.2) at the leading order.

By restricting to states of the form (2.1) we have restricted to an exponentially small

subset of all the states carrying angular momentum J . In particular the dominant contri-

bution to the statistical entropy for a fixed J comes from states where most of the angular

momentum is created by the α+
−1 oscillators, i.e. from the states with Q = 1. The reason for

considering states of the form (2.1) however is that we can distinguish states with different

Q by the fields they produce even though Q is not a conserved charge. In particular the

operator α+
−Q creates quanta of a mode for which the space-time coordinates x1 and x2

have Q complete oscillations as we go once around the string. Thus a state of the form (2.1)

where large number of these modes condense should correspond to a configuration where

the projection of the string in the x1-x2 plane has Q units of winding around its center

of mass coordinate. As a result we expect that the corresponding gravity solution will

be represented by a ring like structure in the x1-x2 plane with Q units of winding charge

along the ring. As we shall see, the entropy of the corresponding solution will match the

statistical entropy given in eq. (2.2).

3. Scaling analysis for black rings

In this section we shall study the geometry of a small black ring in arbitrary dimensions.

Although in the supergravity approximation this solution is singular along the ring, by

studying carefully the geometry near the singularity we shall be able to determine the de-

pendence of the entropy on various charges assuming that the higher derivative corrections

modify the solution in a way such that it has a finite entropy. This will essentially involve

generalization of the scaling analysis of [15 – 18] to the case of rotating black rings.

Consider heterotic string theory in Rt × Rd−1 × S1 × T 9−d with 4 ≤ d ≤ 9. Since

in our analysis the moduli associated with the torus T 9−d will be frozen completely, and

furthermore all the mixed components of the metric and the anti-symmetric tensor field
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with one leg along T 9−d and another leg along one of the other directions will be set to

zero, it will be more convenient to regard the theory as a theory in (d + 1) space-time

dimensions.4 The massless fields in (d + 1) space-time dimensions that are relevant for

analyzing the black ring solution are the string metric Gµν , the anti-symmetric tensor field

Bµν and dilaton Φd+1. The string tree level action involving these fields has the form

S =

∫
dd+1x

√
− det Ge−2Φd+1 L , (3.1)

where L is a function of the metric, Riemann tensor, the 3-form field strength

Hµνρ = ∂µBνρ + cyclic permutations of µ, ν, ρ + ΩCS,L
µνρ (G) , (3.2)

covariant derivatives of these quantities, as well as covariant derivatives of the dilaton

Φd+1 but not of Φd+1 itself. Here ΩCS,L
µνρ (G) denotes the Lorentz Chern-Simons 3-form

constructed out of the string metric Gµν — more precisely out of the spin connection

compatible with this metric — with some appropriate coefficient. Since we set all the

gauge fields in (d + 1)-dimensions to zero, there are no gauge Chern-Simons term in the

definition of Hµνρ. In the supergravity approximation where we have only two derivative

terms, the Lorentz Chern-Simons term disappears from the expression for Hµνρ and L
takes the form

L =
1

(2π)d−2(α′)(d−1)/2

[
RG + 4Gµν∂µΦ∂νΦ − 1

12
Gµµ′

Gνν′
Gρρ′HµνρHµ′ν′ρ′

]
. (3.3)

We denote the coordinates of Rt and S1 by t and xd respectively. Let the coordinate

radius of xd direction be Rd. For Rd−1 we use a special coordinate system in which the

flat metric on Rd−1 takes the form:

dx2
d−1 =

R2

(x − y)2

[
dy2

y2 − 1
+ (y2 − 1)dψ2 +

dx2

1 − x2
+ (1 − x2)dΩ2

d−4

]
, (3.4)

where dΩd−4 denotes the line elements on the (d − 4)-sphere, R is a constant whose value

is given in (3.8), and x, y take values in the range

− 1 ≤ x ≤ 1, −∞ < y ≤ −1 . (3.5)

The relationship between these coordinates and the cartesian coordinates of Rd−1 has been

given in eqs. (A.8), (A.22).

A black ring solution in the supergravity approximation, describing a rotating funda-

mental string of the type described in section 2, has been constructed in appendix A based

on [47, 44, 48, 49] and takes the form:

ds2
str,d+1 = f−1

f [−(dt − Aidxi)2 + (dxd − Aidxi)2 + (fp − 1)(dt − dxd)2] + dx2
d−1

e2Φd+1 = g2 f−1
f , Btd = −(f−1

f − 1), Bti = −Bdi = f−1
f Ai, (3.6)

4In other words we consider a solution for which the world-sheet theory of the fundamental string

propagating in this background is a direct sum of two conformal field theories. The first one is a free field

theory associated with the coordinates of T 9−d and the sixteen additional left-moving world-sheet bosons of

the heterotic string theory. The second one is an interacting theory associated with the string propagation

in the (d + 1)-dimensional black ring solution. Our focus will be on the latter theory.
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where i = 1, 2, . . . , d − 1,

ff = 1 +
Qf

Rd−3

(
x − y

−2y

)(d−3)/2

2F1

(
d − 3

4
,
d − 1

4
; 1; 1 − 1

y2

)
,

fp = 1 +
Qp

Rd−3

(
x − y

−2y

)(d−3)/2

2F1

(
d − 3

4
,
d − 1

4
; 1; 1 − 1

y2

)
, (3.7)

Aidxi = −d − 3

2

q

Rd−5

(y2 − 1)(x − y)(d−5)/2

(−2y)(d−1)/2 2F1

(
d − 1

4
,
d + 1

4
; 2; 1 − 1

y2

)
dψ,

and Qf , Qp, q and R are related to the quantized charges n, w, Q and the angular mo-

mentum J via the relations

q =
16πGd

(d − 3)Ωd−2α′
Q, R2 = α′ J

Q
,

Qf =
16πGdRd

(d − 3)Ωd−2α′
w, Qp =

16πGd

(d − 3)Ωd−2Rd
n . (3.8)

Here ΩD is the area of unit D-sphere and Gd is the d-dimensional Newton’s constant

obtained by regarding the S1 direction as compact

16πGd =
16πGd+1

2πRd
=

(2π)d−3g2α′(d−1)/2

Rd
. (3.9)

n and −w denote respectively the number of units of momentum and winding charge along

the S1 direction labeled by xd. Q represents the number of units of winding charge along

the singular ring situated at y = −∞. From the perspective of an asymptotic observer Q

appears as a dipole charge and does not represent a conserved gauge charge. In order that

the metric given in (3.6) has the standard signature, we require R2 > 0, i.e.

JQ > 0 . (3.10)

For d = 5 the hypergeometric functions simplify and we have

ff = 1 +
Qf (x − y)

2R2
, fp = 1 +

Qp(x − y)

2R2
, Aidxi = −q

2
(1 + y)dψ. (3.11)

This d = 5 solution can be obtained by setting to zero one of the three charges and two of

the three dipoles charges of the supersymmetric black ring solution of [32 – 35]. The solution

with general d can also be found by U-dualizing the supergravity supertube solution of [43].

For reasons that will become clear later, we shall work with the following assignment

of charges:

J À Q À 1, n ∼ w, nw ∼ JQ, 1 − JQ

nw
∼ 1 . (3.12)

Since the ring singularity occurs as y → −∞ we shall study the geometry near the singu-

larity by examining the large negative y region. For

R√
α′

À |y| À
(

1

g2 Q

) 1
d−4 R√

α′
,

(
R2

d

g2 Q

) 1
d−4 R√

α′
, 1 , (3.13)
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the functions ff , fp and Aψ take the form:

ff '
{

cdQfR3−d|y|d−4 for d > 4,

1
πQfR−1 log |y| for d = 4,

fp '
{

cdQpR
3−d|y|d−4 for d > 4,

1
πQpR

−1 log |y| for d = 4,

Aψ '
{
−cdqR

5−d|y|d−4 for d > 4,

− 1
π qR log |y| for d = 4,

(3.14)

where

cd =
Γ(d−4

2 )

2
√

π Γ(d−3
2 )

. (3.15)

Let us restrict to the case d ≥ 5 and use the convention α′ = 1. Using eqs. (3.8)

and (3.9) we see that in the region (3.14) the original solution (3.6) takes the form:

ds2
str,d+1 =

n

w

1

R2
d

(dxd − dt)2 + 2
(d − 3)Ωd−2

cd (2π)d−3

1

w

R

g2

(
−R

y

)d−4

dt (dxd − dt)

+2
J

w Rd
dψ (dxd − dt) + R2 dy2

y4
+ R2 dψ2 +

(
−R

y

)2

dΩ2
d−3 ,

1

2
Bµνdxµ ∧ dxν = −(d − 3)Ωd−2

cd (2π)d−3

1

w

R

g2

(
−R

y

)d−4

dt ∧ (dxd − dt)

+
J

w Rd
d(xd − t) ∧ dψ + constant ,

e2Φd+1 =
(d − 3)Ωd−2

cd (2π)d−3

R

w

(
−R

y

)d−4

, (3.16)

where

dΩ2
d−3 ≡ dx2

1 − x2
+ (1 − x2)dΩ2

d−4 (3.17)

is the squared line element on a (d − 3)-sphere and the constant in the expression for

B represents a constant 2-form proportional to dt ∧ dxd which can be removed by gauge

transformation. For this solution all scalars constructed out of curvatures and other field

strengths are small in the region (3.13). For example the (d+1)-dimensional Ricci scalar in

the string frame goes as (y/R)2 in this region. As a result the supergravity approximation

is still valid in this region and the form of the solution (3.16) can be trusted.

It is easy to see from (3.16) that the 2 × 2 matrix describing the metric in the ψ-xd

plane develops a negative eigenvalue for JQ > nw. Since the ψ-xd plane is topologically

a two dimensional torus, the corresponding space-time has closed time-like curves. Thus

absence of closed time-like curve requires that

JQ ≤ nw . (3.18)

Thus is precisely the Regge bound. The fact that (3.18) can be derived by requiring

absence of closed time-like curves was noted in [43] in a different U-duality frame. Here

– 7 –
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we see that this geometrical condition is identical to the Regge bound in the spectrum of

elementary BPS string states that follows from the left-right level matching condition in

the microscopic theory analyzed in section 2.

Note that both the conditions JQ > 0 given in (3.10) and the Regge bound (3.18) are

expected from the profile of the microscopic string underlying the solution as discussed in

the appendix. This construction led to a manifestly positive JQ and (nw−JQ). The point

however is that once we have obtained the solution, we can interpret it as a solution of

the supergravity equations of motion parametrized by the charges J , Q, n and w without

worrying about where it came from. Nevertheless regularity of the space-time geometry

requires both the conditions (3.10) and (3.18) to be satisfied.

From now on we shall restrict our analysis to the case JQ < nw. By examining the

solution (3.16) we see that this seems to depend on the various charges n, w, J , Q as well

as the asymptotic values g and Rd of the moduli fields. We shall now show that by making

a suitable coordinate transformation the solution can be made to be independent of the

parameters g and Rd, and have simple dependence on the charges. We define

σ =

√
n

w
− JQ

w2

1

Rd
(xd − t), ρ = −R

y
,

τ =
(d − 3)Ωd−2

cd (2π)d−3

Rd√
nw − JQ

R

g2
t, χ =

√
J

Q
ψ +

√
JQ

w

1

Rd
(xd − t), (3.19)

In this coordinate system the region (3.13) gets mapped to

1 ¿ ρ ¿
(
g2Q

) 1
d−4 ,

(
g2Q/R2

d

) 1
d−4 , R , (3.20)

and the coordinates χ and σ have the following periods:

(σ, χ) ≡
(

σ, χ + 2π

√
J

Q

)
≡

(
σ + 2π

√
n

w

√
1 − JQ

nw
,χ + 2π

√
JQ

w

)
. (3.21)

The σ-χ plane at fixed values of the other coordinates is topologically a two dimensional

torus of coordinate area

Aσχ = 4π2

√
Jn

Qw

√
1 − JQ

nw
. (3.22)

In terms of the coordinates (3.19) the field configuration given in (3.16) in the region (3.20)

takes the form:

ds2
str,d+1 = dσ2 + dχ2 + 2ρd−4 dτdσ + dρ2 + ρ2dΩ2

d−3

1

2
Bµνdxµ ∧ dxν = −ρd−4 dτ ∧ dσ +

(
nw

JQ
− 1

)−1/2

dσ ∧ dχ

e2Φd+1 =
(d − 3)Ωd−2

cd (2π)d−3

1

w

√
J

Q
ρd−4 . (3.23)

By examining the solution we see that in this coordinate system the solution as well as the

periodicities of the (σ, χ) coordinates are independent of the parameters g and Rd. Fur-

thermore the dependence of the solution on the charges comes via some additive constants

– 8 –



J
H
E
P
0
4
(
2
0
0
7
)
0
1
7

in the expressions for Bσχ and Φd+1, and in the periodicities of the (σ, χ) plane. We shall

make use of this observation later to determine how the α′-corrected solution depends on

the charges.

We now note the following properties of this background:

• For ρ À 1 curvature and other field strengths associated with this configuration

are small. Hence the higher derivative corrections to the equations of motion are

negligible. Since J ∼ nw/Q ∼ w2/Q and Q À 1, the string coupling constant eΦd+1

is also small in this region showing that the string loop corrections are also negligible.

• For ρ ∼ 1 the curvature and other field strengths become of order unity and hence the

α′ corrections become important. However eΦd+1 continues to be small since for the

choice of charges of the form (3.12), 1
w

√
J
Q ∼ 1

Q is small. Thus string loop corrections

are not important.

• If we naively put a ‘stretched horizon’ at ρ ∼ 1, and calculate the naive entropy from

the area of the stretched horizon, spanned by χ, σ and the coordinates of Sd−3 we get

an answer proportional to
√

nw − QJ . This seems to agree with the formula (2.2)

for the statistical entropy. However we should keep in mind that at ρ ∼ 1 higher

derivative corrections are important and neither the form of the solution nor the

Bekenstein-Hawking formula for the entropy can be trusted. This is the problem to

which we shall now turn.

The analysis of higher derivative corrections to the solution given in (3.23) is facilitated

by the following observations:

i) The solution given in (3.23) is independent of the coordinates τ , σ and χ. It also has

a SO(d − 2) spherical symmetry acting on the coordinates of the unit (d − 3)-sphere

whose line element has been denoted by dΩd−3. We expect that the α′-corrected

solution will also preserve these symmetries.

ii) Since the string coupling constant at the horizon is small, we can ignore string loop

corrections to the effective action. The tree level α′ corrected theory can be described

by an effective Lagrangian density in (d + 1) dimensions which does not depend on

the periods of the σ and the χ coordinates. Since we are looking for solutions which

are independent of the σ and χ coordinates, the independence of the Lagrangian

density on their periodicities guarantees that there is no dependence of the solution

on the periodicities of these variables.5 In particular the solution will have precisely

the same form even if the σ and the χ coordinates had been non-compact.

iii) By examining the form of the solution (3.23) we see that except for an additive con-

stant term
(

nw
JQ − 1

)−1/2
in the expression for Bσχ and an additive term of the form

5One could worry about possible corrections to the effective action due to world-sheet instantons wrap-

ping the χ-σ torus. However such contributions will be exponentially suppressed due to large area of this

torus measured in the string metric.
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1
2 ln

(
1
w

√
J
Q

)
in the expression for Φd+1, the solution is independent of the various

charges and the asymptotic values of the various moduli e.g. g, Rd etc. Since the tree

level effective Lagrangian density depends on Φd+1 only via an overall multiplicative

factor of e−2Φd+1 and terms involving derivatives of Φd+1 and depends on Bµν only

through its field strength dB, Bµν and Φd+1 can be shifted by arbitrary constants

without affecting the rest of the solution. Thus we shall expect that even after in-

cluding the α′ corrections the solution continues to be independent of the various

charges and the parameters g, Rd etc. except for an additive factor of 1
2 ln

(
1
w

√
J
Q

)

in Φd+1 and an additive factor of
(

nw
JQ − 1

)−1/2
in Bσχ.

The general form of the modified solution subject to these requirements is given by

ds2
str,d+1 = gαβ (ρ) dζαdζβ + f1 (ρ) dΩ2

d−3 + dρ2

1

2
Bµνdxµ ∧ dxν = bαβ (ρ) dζα ∧ dζβ +

(
nw

JQ
− 1

)−1/2

dσ ∧ dχ,

e2Φd+1 =
1

w

√
J

Q
f2 (ρ) , (3.24)

where ζ ≡ (ζ0, ζ1, ζ2) stands collectively for the coordinates τ , σ and χ, and gαβ, bαβ, f1

and f2 are some universal functions of the coordinate ρ, independent of any other charges

and parameters. The solution in the original coordinate system, if needed, can now be

found by applying the inverse of the coordinate transformation (3.19) on (3.24).

A priori we do not know the form of the functions gαβ , bαβ , f1 and f2, but let us

proceed with the assumption that α′ corrections modify the near horizon geometry to that

of an (extremal) black hole. In that case computation of the entropy requires us to integrate

certain combinations of the fields over the horizon [50 – 53]. From the coordinate area of

4π2
√

Jn
Qw

√
1 − JQ

nw in the χ-σ plane we get a factor proportional to
√

Jn
Qw

√
1 − JQ

nw from

integration along these coordinates. The multiplicative factor of w
√

Q
J in e−2Φd+1 appears

as an overall normalization factor in the α′ corrected effective action and gives a factor

proportional to w
√

Q
J in the entropy. Besides these multiplicative factors the contribution

to the entropy cannot depend on any other charges or parameters since the solution has

no non-trivial dependence on any other parameter. This gives

SBH = C
√

nw − JQ (3.25)

for some constant C. This is in precise agreement with the answer (2.2) for the statistical

entropy if we take C = 4π.

It is worth emphasizing the role of the scaling region (3.20) where the supergravity

solution (3.23) is valid. As we have seen, in this region the dependence of the solution on

the asymptotic moduli parameters Rd and g disappears completely. This is then used to

argue that the α′ corrected solutions near the horizon will also be independent of these

parameters. Thus this scaling region acts as a shield which isolates the near horizon region
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from the asymptotic region. However, since for large but finite charges the scaling region

has a large but finite size, we expect that this shielding will work only in the leading

order, and could break down at the subleading order in an expansion in inverse powers of

charges. In section 4 we shall see that if we assume that the near horizon geometry has an

AdS2 factor then the independence of the entropy of the asymptotic parameters holds to

all orders since there is an infinite throat region of AdS2 that separates the near horizon

geometry from the asymptotic geometry by an infinite amount.

We note in passing that if we had tried to carry out a similar scaling analysis for the

rotating black hole solutions of [54] or their generalization to higher dimension, we would be

led to the conclusion that the result for the black hole entropy is of the form
√

nw g(J2/nw)

for some function g [55]. This is in contradiction with the microscopic result which gives

the entropy to be
√

nw times a function of J/nw. This also shows that the ring geometry

is the correct geometry for describing an elementary string state with spin.

Just based on the scaling analysis we cannot determine the value of this coefficient

C. However since from the point of view of the near horizon geometry the coordinate ψ

describes a non-contractible circle, we can regard this as a compact direction. In that case

the solution (3.23) and its α′ corrected version (3.24) can be regarded as one describing

the near horizon geometry of a non-rotating black hole in a space-time with (d − 1) non-

compact dimensions, carrying n units of momentum and −w units of winding along the

xd directions and J units of momentum and Q units of winding along the ψ directions.

Thus as long as non-rotating small black holes in (d − 1) dimensions have finite entropy,

rotating d dimensional black holes also have finite entropy. Furthermore if the entropy of

non-rotating small black holes in (d − 1) dimensions agrees with the microscopic entropy,

the constant C is equal to 4π. This in turn will imply that the entropy of the rotating

small black rings in d dimension also agrees with the corresponding statistical entropy.

Regarding the solution as a (d − 1)-dimensional small black hole also gives us some

insight into the form of eq. (3.25). The (d − 1)-dimensional effective action is known to

have a continuous SO(2, 2) symmetry to all orders in α′ expansion due to the fact that we

are examining a sector where the fields are independent of σ and χ directions. The only

SO(2, 2) invariant combination of the charges n, w, J and Q is nw − JQ or a function of

this combination. Since (3.25) depends on this combination we see that this formula is

consistent with the SO(2, 2) invariance of the theory.

4. Entropy function and near horizon geometry

In section 3 we determined the geometry of the small black ring in terms of some unknown

universal functions gαβ(ρ), bαβ(ρ), f1(ρ) and f2(ρ). Supergravity approximation to the

effective action, which is valid for large ρ, determines the behavior of these functions at

large ρ. In this section we shall describe a general procedure for determining the form

of these functions at small ρ, assuming that the near horizon geometry in this region

approaches that of an extremal black hole with an AdS2 factor, and as a result possesses

an enhanced isometry SO(2, 1). Our main tool in this analysis will be the entropy function

method described in [45, 56].

– 11 –



J
H
E
P
0
4
(
2
0
0
7
)
0
1
7

As in section 3 we consider heterotic string theory compactified on T 9−d × S1 and

consider an extremal black ring solution in this theory. From the analysis of section 3 we

know that the geometry close to the horizon has two compact directions labeled by the

angular coordinate ψ and the coordinate along S1:

yd = (xd − t)/Rd , (4.1)

each with period 2π. Thus we can analyze the near horizon geometry of such a black

ring by analyzing the (d − 1)-dimensional theory obtained via dimensional reduction of

the original theory on these two circles. We parametrize these (d − 1) dimensions by the

coordinates {ξm} with 0 ≤ m ≤ (d − 2), and introduce the following (d − 1)-dimensional

fields in terms of the original (d + 1)-dimensional fields:6

ds2
str,d+1 = Ĝmn(ξ)dξmdξn+ |!R(ξ)2(dyd + A(1)

m (ξ)dξm)2+R̃(ξ)2(dψ+A(2)
m (ξ)dξm)2

+2S(ξ) (dyd+A(1)
m (ξ)dξm) (dψ+A(2)

n (ξ)dξn) ,

1

2
Bµνdxµ ∧ dxν =

1

2
B̂mn(ξ) dξm ∧ dξn+C(ξ) (dyd+A(1)

m (ξ)dξm) ∧ (dψ+A(2)
m (ξ)dξm)

+(dyd+A(1)
m (ξ)dξm) ∧ A(3)

n (ξ) dξn+(dψ+A(2)
m (ξ)dξm) ∧ A(4)

n (ξ) dξn .

(4.2)

Thus the fields in (d− 1) dimensions include a metric Ĝmn, an anti-symmetric tensor field

B̂mn, four gauge fields A
(i)
m for 1 ≤ i ≤ 4 and five scalar fields R, R̃, S, C and Φd+1. The

gauge invariant field strengths constructed out of the fields A
(i)
m and B̂mn are:

F (i)
mn = ∂mA(i)

n − ∂nA(i)
m , i = 1, 2, 3, 4

Ĥmnp =
(
∂mB̂np + cyclic permutations of m,n, p

)
+ ΩCS

mnp , (4.3)

where

ΩCS
mnp =

{
(A(3)

m F (1)
np + A(4)

m F (2)
np ) + cyclic permutations of m,n, p

}
+ ΩCS,L

mnp (Ĝ) . (4.4)

The action of the dimensionally reduced theory has the form:

S =

∫
dd−1x

√
− det Ĝ e−2Φd+1 Ld−1 , (4.5)

where Ld−1 is a scalar function of the scalars R, R̃, S and C, the metric Ĝmn, Riemann

tensor, the field strengths F
(i)
mn and Ĥmnp, ∂mΦd+1 and covariant derivatives of these quan-

tities.

The presence of the Chern-Simons terms in the definition of Ĥmnp makes this form of

the action unsuitable for applying the entropy function formalism since the latter requires

the Lagrangian density, when expressed in terms of the independent fields of the theory,

6Our definition of the (d−1)-dimensional antisymmetric tensor field bBmn differs from the standard one,

e.g. the one used in [11], by a term proportional to (A
(1)

[mA
(3)

n] + A
(2)

[m A
(4)

n] ). As a consequence the expression

for the gauge Chern-Simons term appearing in the expression for bHmnp is also slightly different.
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to be a function of manifestly covariant quantities like the metric, Riemann tensor, gauge

field strengths, scalar fields, covariant derivatives of these quantities etc., and not e.g. of

non-covariant quantities like the gauge fields or the spin connection.7 To get around this

problem we need to dualize the theory [57]. For this note that Ĥmnp satisfies the Bianchi

identity

∂[m

(
Ĥnpq] − ΩCS

npq]

)
= 0 . (4.6)

We now introduce a new (d − 5)-form field Bm1...md−5
, define

Hm1...md−4
= ∂m1Bm2...md−4

+ cyclic permutations of m1 . . . md−4 with sign , (4.7)

to be its field strength and consider a new action

∫
dd−1x

√
−det ĜL̃d−1 , (4.8)

√
−det Ĝ L̃d−1 =

[√
−det Ĝe−2Φd+1Ld−1+εm1...md−1

(
Ĥm1m2m3−ΩCS

m1m2m3

)
Hm4...md−1

]
,

(4.9)

regarding Ĥmnp and Bm1...md−5
as independent fields. Here εm1...md−1 is totally antisym-

metric in its indices, with ε01...(d−2) = 1. Equations of motion of the B field gives the

Bianchi identity (4.6). On the other hand the equations of motion of Ĥm1m2m3 gives

δS
δĤm1m2m3

+ εm1...md−1 Hm4...md−1
= 0 . (4.10)

Together with the Bianchi identity ∂[m3
Hm4...md−1] = 0, (4.10) gives us the original equa-

tions of motion of the B̂mn field:

∂p

(
δS

δĤmnp

)
= 0 . (4.11)

Thus classically (4.8) and (4.5) gives rise to the same theory and we can choose to work

with the action (4.8).

The action (4.8) can now be brought into a manifestly gauge, local Lorentz and general

coordinate invariant form by integrating the last term in (4.9) by parts. This gives a new

Lagrangian density:

√
− det Ĝ L̃′

d−1 =

√
− det Ĝ e−2Φd+1 Ld−1 (4.12)

−(d − 4)εm1...md−1 ∂m4

(
Ĥm1m2m3 − ΩCS

m1m2m3

)
Bm5...md−1

.

Since dΩCS can be expressed as a function of manifestly covariant quantities like the Rie-

mann tensor and gauge field strengths F
(i)
mn, the Lagrangian density L̃′

d−1 is suitable for

7The only exception to this rule are p-form gauge fields whose near horizon values themselves are

manifestly invariant under all the isometries of the near horizon geometry. In this case we never need to

explicitly use the gauge invariance associated with these fields and can regard them as ordinary tensor

fields.
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applying the entropy function formalism. Note however that L̃′
d−1 does not have manifest

symmetry under the gauge transformation B → B + dΛ, Λ being a (d − 6)-form gauge

transformation parameter. This will not affect our analysis since we shall be considering

field configurations for which the field B (and not just its field strength H) has all the

necessary symmetries. Thus, as discussed in footnote 7, we never need to make use of the

gauge invariance associated with the field B, and shall treat B as an independent tensor

field.

We are now ready to apply the entropy function formalism. We begin with the basic

postulate that in terms of the (d − 1)-dimensional fields the near horizon metric of the

extremal black ring has the structure of AdS2 × Sd−3, with all other field configurations

respecting the SO(2, 1)×SO(d−2) isometry of AdS2×Sd−3. Then the general near horizon

geometry of the black ring is of the form:8

Ĝmndξmdξn = v1

(
−r2dt̄2 +

dr2

r2

)
+ v2 dΩ2

d−3 ,

R = uR, R̃ = ũR,

S = uS , C = uC , Φd+1 = uΦ ,
1

2
F (i)

mndxm ∧ dxn = ei dr ∧ dt̄ , i = 1, 2, 3, 4

1

(d − 5)!
Bm1...md−5

dξm1 ∧ . . . ∧ dξmd−5 =





b for d = 5

b dr ∧ dt for d = 7

0 for d 6= 5, 7

, (4.13)

where v1, v2, uR, ũR, uS, uC , uΦ, e1, e2, e3, e4 and b are constants and dΩd−3 denotes

the line element on a unit (d − 3)-sphere. Note that we have not explicitly given the Ĥ

field background; we are implicitly assuming that Ĥ has been eliminated from the action

using its equation of motion. In any case, the only possible non-zero component of Ĥmnp

consistent with the symmetries of AdS2 × Sd−3 is a flux through Sd−3 in the special case

of d = 6. However since we are considering solutions without magnetic charge, — more

specifically NS 5-brane charge — even for d = 6 this flux should vanish. Thus we can

consistently set Ĥmnp to zero. The entropy function for a black ring carrying n units of

momentum and −w units of winding along yd and J units of momentum and Q units of

winding along ψ, is now given by [45]9

E(n, J,w,Q, v1, v2, uR, ũR, uS , uC , uΦ, e1, e2, e3, e4, b)

= 2π

(
ne1 + Je2 + we3 − Qe4 −

∫

Sd−3

√
− det Ĝ L̃′

d−1

)
, (4.14)

8r is related to the coordinate ρ of section 3 by the relation r = eρ/
√

v
1 . The coordinate t̄ and τ are in

general related by a scaling. However since a rescaling of the form t̄ → λ t̄, r → r/λ, being an isometry of

AdS2, preserves the form of the solution, we can use this freedom to choose

t̄ = τ, r = c eρ/
√

v
1 ,

for some constant c.
9According to the convention of section 3, n, J , w and −Q represent the charges associated with the

A
(1)
m , A

(2)
m , A

(3)
m and A

(4)
m fields respectively. This explains the signs in front of various charges in (4.14).

Note however that we have chosen to call −w and Q the winding charges along yd and ψ respectively.
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where
√

− det Ĝ L̃′
d−1 has to be evaluated on the horizon. The entropy is given by E after

extremizing it with respect to the near horizon parameters v1, v2, uR, ũR, uS , uC , uΦ, e1,

e2, e3, e4 and b.

This gives a general algebraic procedure for determining the near horizon geometry of

a small black ring for a given action. We shall now show that the entropy calculated from

this formalism has the same dependence on n, w, J and Q as was derived in the previous

section. For this we need to use the known scaling properties of the α′ corrected tree level

effective action of the heterotic string theory. First of all note from (4.12) that

L̃′
d−1 → λ L̃′

d−1 under e−2Φd+1 → λ e−2Φd+1 , Bm1...md−5
→ λBm1...md−5

. (4.15)

The freedom of changing the periodicity along the circle S1 labeled by yd and subsequently

making a rescaling of the yd coordinate to bring the period back to 2π gives another scaling

property of the Lagrangian density:

L̃′
d−1 → κ L̃′

d−1 under A(1)
m → κ−1 A(1)

m , A(3)
m → κA(3)

m ,

R → κR, S → κS,

C → κC . (4.16)

Finally there is a similar scaling property associated with the scaling of the ψ coordinate.

This gives

L̃′
d−1 → η L̃′

d−1 under A(2)
m → η−1A(2)

m , A(4)
m → ηA(4)

m ,

R̃ → η R̃, S → η S,

C → η C . (4.17)

From (4.15), (4.16) and (4.17) we can derive the following properties of the entropy function:

E → λ E under e−2uΦ → λ e−2uΦ , b → λ b, Q → λQ,

n → λn, w → λw, J → λJ , (4.18)

E → κE under e1 → κ−1 e1, n → κ2 n, J → κJ,

e3 → κe3, Q → κQ, uR → κuR,

uS → κuS , uC → κuC , (4.19)

and

E → η E under n → η n, e2 → η−1 e2, J → η2 J,

w → η w, e4 → η e4, ũR → η uR,

uS → η uS , uC → η uC . (4.20)

From this it follows that after elimination of the various near horizon parameters by ex-

tremizing E , the entropy SBH = E has the property:

SBH → λSBH under n → λn, w → λw, J → λJ Q → λQ ,

SBH → κSBH under n → κ2 n, Q → κQ, J → κJ , (4.21)
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and

SBH → η SBH under n → η n, w → η w, J → η2 J . (4.22)

eqs. (4.21), (4.21) and (4.22) give

SBH =
√

nw f

(
JQ

nw

)
, (4.23)

for some function f .

We can constrain the form of the function f by noting that the dimensionally reduced

Lagrangian density has a further symmetry induced by a rotation in the yd − ψ plane by

the matrix

U =

(
cos θ sin θ

− sin θ cos θ

)
. (4.24)

This induces a transformation
(

R2 S

S R2

)
→ U

(
R2 S

S R̃2

)
UT ,

(
A

(1)
m

A
(2)
m

)
→ U

(
A

(1)
m

A
(2)
m

)
,

(
A

(3)
m

A
(4)
m

)
→ U

(
A

(3)
m

A
(4)
m

)
.

(4.25)

Thus the entropy function E is invariant under
(

e1

e2

)
→ U

(
e1

e2

)
,

(
e3

e4

)
→ U

(
e3

e4

)
,

(
n

J

)
→ U

(
n

J

)
,

(
w

−Q

)
→ U

(
w

−Q

)
,

(
u2

R uS

uS ũ2
R

)
→ U

(
u2

R uS

uS ũ2
R

)
UT . (4.26)

As a result the black hole entropy SBH is invariant under
(

w

−Q

)
→ U

(
w

−Q

)
,

(
n

J

)
→ U

(
n

J

)
. (4.27)

Together with (4.23) this uniquely fixes the form of SBH to be

SBH = C
√

nw − JQ , (4.28)

for some constant C.

If the entropy function had no flat directions then we would also be able to deter-

mine the near horizon parameters labeling the solution by demanding that the solution

remains invariant under the symmetry transformations described above. This however is

not possible due to the existence of two flat directions of the entropy function.10 Thus

10If we consider the case where the coordinates yd and ψ are both compact and there are no fluxes then the

vacuum moduli space, ignoring the T 9−d factor, is SO(2, 2)/(SO(2)× SO(2)) where SO(2, 2) represents the

continuous T-duality symmetry associated with a T 2 compactification, and SO(2) × SO(2) is its maximal

compact subgroup. Since the charge vector (n, J, w, Q) is invariant under an SO(2, 1) subgroup of this

SO(2, 2) group, once we switch on a flux proportional to this charge vector the moduli space of solutions

becomes the two dimensional space SO(2, 1)/ SO(2). This would correspond to two flat directions of the

entropy function. The only exceptions are light-like charge vectors in which case the little group will be

SO(1, 1), but this corresponds to the case nw − JQ = 0 which we are not considering here. In general a

symmetry transformation of the type given in eqs. (4.15)-(4.17) and (4.25), instead of leaving the solution

unchanged, will take one solution to another solution.
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for a given set of charges (n, J,w,Q) the entropy function extremization condition gives a

two parameter family of solutions. Which of these solutions actually appear as the near

horizon configuration of the black ring will depend on the asymptotic data — in particular

the asymptotic values of the moduli fields and the information that we are considering

a black ring in d-dimensions rather than a black hole in (d − 1) dimensions where the ψ

direction remains compact even asymptotically. Thus the entropy function itself cannot

give complete information about the near horizon geometry even if we knew the full α′

corrected action.

On the other hand, the analysis in section 3 does know about the asymptotic infinity

since it is based on a solution of the supergravity equations of motion embedded in an

asymptotically flat d-dimensional spacetime. Therefore the solution (3.23) in the scaling

region (3.20) does not involve any unknown parameter, and in turn completely determines

the general form (3.24) of the solution near the horizon. This suggests that we can combine

the results of section 3 and this section to fix the form of the near horizon geometry. We

first note that the solution (4.13) corresponds to the (d+1)-dimensional field configuration:

ds2
str,d+1 = v1

(
−r2dt̄2 +

dr2

r2

)
+ v2 dΩ2

d−3 + u2
R(dyd + e1rdt̄)2 + ũ2

R(dψ + e2r dt̄)2

+2uS (dyd + e1rdt̄) (dψ + e2rdt̄) ,

1

2
Bµνdxµ ∧ dxν = uC (dyd + e1rdt̄) ∧ (dψ + e2rdt̄) + e3r (dyd + e1rdt̄) ∧ dt̄

+e4r (dψ + e2rdt̄) ∧ dt̄ ,

e−2Φd+1 = e−2uΦ . (4.29)

In writing (4.29) we have used the coordinate transformations yd → yd + at̄, χ → χ+ bt̄ to

remove the constant terms in A
(1)
t and A

(2)
t . On the other hand (3.19), (3.24) tells us that

if we use the (σ, χ) coordinate system defined through

σ =

√
n

w
− JQ

w2
yd, χ =

√
J

Q
w +

√
JQ

w
yd , (4.30)

then the solution has a universal form except for some additive constants in Bσχ and

ln Φd+1. Requiring (4.29) to satisfy this requirement we get the form of the solution to be:

ds2
str,d+1 = c1

(
−r2dt̄2 +

dr2

r2

)
+ c2 dΩ2

d−3 + c3 (dσ + c4 r dt̄)2 (4.31)

+c5 (dχ + c6 r dt̄)2 + c7 (dσ + c4 r dt̄) (dχ + c6 r dt̄)

e2Φd+1 = c8

√
J

Q

1

w

1

2
Bµνdxµ ∧ dxν = c9 r dσ ∧ dt̄ + c10r dχ ∧ dt̄ + c11dσ ∧ dχ +

(
nw

JQ
− 1

)−1/2

dσ ∧ dχ ,

where c1, . . . , c11 are some numerical constants independent of any charges or other asymp-

totic data, which can in principle be determined, up to the flat direction, by extremizing

– 17 –



J
H
E
P
0
4
(
2
0
0
7
)
0
1
7

the entropy function. This gives the general form of the solution close to the horizon. Since

the periodicities of the σ and χ directions, as given in (3.21), depends on the charges, the

solution has some additional implicit dependence on the charges besides the ones shown

in (4.31). This can be made explicit by rewriting the solution in terms of (yd, ψ, t̄, r) coor-

dinate system using (4.30) such that both the compact coordinates yd and ψ have period

2π.

In the spirit of the discussion at the end of section 3 we note that from the point

of view of the near horizon geometry the coordinate ψ can be regarded as a compact

direction. In that case the entropy function E considered here can be regarded as that of a

(d−1) dimensional non-rotating black hole carrying n units of momentum and −w units of

winding along the yd direction and J units of momentum and Q units of winding along the

ψ direction. Thus as long as non-rotating small black holes in (d−1)-dimension have finite

entropy, rotating d-dimensional black holes also have finite entropy.11 Furthermore if the

entropy of non-rotating small black holes in (d− 1) dimension agrees with the microscopic

entropy, the constant C is equal to 4π. This in turn will imply that the entropy of the

rotating small black rings in d dimension also agrees with the corresponding statistical

entropy.

In this context it is also worth emphasizing that if we were studying a small black

hole with four charges in (d − 1) dimensions instead of a ring in d-dimensions, then the

near horizon geometry does contain two arbitrary parameters whose values need to be

determined from the knowledge of the asymptotic values of the moduli field. In particular

if we carry out an analysis analogous to that of section 3, we shall find that even in the

scaling region the supergravity solution continues to depend on a pair of asymptotic moduli.

5. Discussion

In this paper we studied the near-horizon geometry of the small black ring carrying charge

quantum numbers (n, J,w,Q) from two different viewpoints. First we examined the full

singular black ring solution of the supergravity theory describing a rotating spinning string

and identified a scaling region where, in a suitable coordinate system, the solution ceased

to depend on the asymptotic moduli and its dependence on the various charges appear in a

fashion such that higher derivative corrections are insensitive to the charges. This allowed

us to express the α′-corrected solution in terms of a set of universal functions independent

of any parameters. The entropy computed from the α′-corrected solution was found to have

the form C
√

nw − JQ where C is a numerical constant that cannot be computed in the

absence of a complete knowledge of all the α′ corrections. Even if the α′ correction to the

effective action is known, in this approach it would be a highly non-trivial task to actually

find the solution to the equations of motion and calculate the coefficient C from the α′-

corrected action. Nevertheless the result for the entropy found in this approach is consistent

with the result for the statistical entropy of the same system, given by 4π
√

nw − JQ.

11For example if we add to the action a (d − 1)-dimensional Gauss-Bonnet term then the resulting non-

rotating small black holes acquire a finite entropy [18].
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In the second approach we focussed our attention on the near horizon geometry instead

of examining the full solution. Assuming that the near horizon geometry has an enhanced

SO(2, 1) symmetry besides the manifest rotational isometries of the solution, we can write

down the general form of the solution in terms of a set of constant parameters, and the

entropy is obtained by extremizing the entropy function with respect to these parameters.

Using the various known scaling properties of the α′-corrected effective action we then

determined the dependence of the entropy obtained this way on the charges, and arrived

at the same answer C
√

nw − JQ for some constant C. Again computation of the constant

C requires knowledge of the α′-corrected action, but in this case once we know the action

there is a simple algorithm to compute the entropy without having to solve any differential

equations.

In principle extremization of the entropy function also determines the parameters char-

acterizing the near horizon geometry. In practice however this is plagued by the problem

that the entropy function relevant for this problem has two flat directions, and hence the

extremization condition does not determine the solution uniquely. Thus which member of

this two parameter family appears as the actual near horizon geometry depends on the

asymptotic data. Nevertheless by combining the information about the asymptotic data

from the first approach with the requirement of enhanced SO(2, 1) symmetry of the near

horizon geometry we can determine the near horizon geometry in terms of the charges and

a few (presently unknown) numerical constants.

Clearly the most important open problem is to find the constant C. An insight into this

problem can be gained from the observation that this constant is the same as what appears

in the expression for the entropy of a non-rotating small black hole in one less dimension.

Thus agreement between the microscopic and macroscopic entropy for non-rotating small

black hole in (d−1)-dimension would also imply agreement between microscopic and macro-

scopic entropy of a rotating small black ring in d-dimensions. At present however concrete

analysis of this constant C has been performed only in the case of four dimensional small

black holes [31]. Initial studies of these black holes were based on keeping only a small

subset of higher derivative corrections to the effective action, e.g. the F-type terms [9] or

the Gauss-Bonnet term [18], yielding the same answer C = 4π. However later a general

procedure for analyzing these black holes was developed by Kraus and Larsen [19] where,

based on the assumption that the AdS2 and the S1 factor of the near horizon geometry

combine to form an AdS3 space, they were able to relate the coefficient C to the coefficients

of the gauge and gravitational Chern-Simons terms in the action. Since these coefficients

are known exactly, C also can be calculated exactly. This yielded the same answer C = 4π.

In principle it should be possible to generalize the results of Kraus and Larsen to higher

dimensional black holes, but so far this has not been done.
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A. Supergravity small black rings in general dimensions

In this appendix we shall construct small black ring solutions in heterotic string theory

with d non-compact space-time dimensions, describing a rotating elementary string. The

same solution in a different U-duality frame was derived in [43] as supergravity supertubes.

Consider heterotic string theory in Rt ×Rd−1 ×S1 ×T 9−d with 4 ≤ d ≤ 9. We denote

the coordinates of Rt, Rd−1 and S1 by t, x = (x1, . . . , xd−1) and xd respectively, and the

coordinate radius of the xd direction by Rd. We would like to study the geometry of a small

black ring sitting in the noncompact d-dimensional space Rt × Rd−1. As in section 3, we

shall regard this as a solution in the (d + 1)-dimensional theory obtained by dimensional

reduction of the ten dimensional heterotic string theory on T 9−d. Thus we shall use the

(d + 1)-dimensional fields to express the solution. This in particular will require us to take

the solution to be independent of the coordinates of T 9−d; this is done by ‘smearing’ the

ten dimensional solution along T 9−d.

In [47, 44], a large class of supergravity solutions were derived which correspond to a

fundamental string with an arbitrary left-moving traveling wave on it, x = F(t−xd), where

F = (F1, . . . , Fd−1) are arbitrary functions. In [48] (see also [36]), the situation where a

fundamental string is wrapping −w (w À 1) times around the xd direction and carrying

n (n À 1) units of momentum along the xd direction was considered in the particular

case of d = 5. It was argued there that in such a situation the supergravity description is

obtained by smearing the solution of [44] in the xd direction. The smeared solution can

be compactified on the xd direction, giving a five-dimensional solution with an arbitrary

profile of the fundamental string, x = F(v), in the noncompact R4.

This construction of [48] can be straightforwardly generalized to arbitrary d. Namely,

a solution of the (d + 1)-dimensional supergravity equations of motion, describing a fun-

damental string wrapping −w (w À 1) times around the xd direction, carrying n (n À 1)

units of momentum along the xd direction, and having an arbitrary shape in the noncom-

pact Rd−1 direction parametrized by the profile function x = F(v) (0 ≤ v ≤ L), is given

by:

ds2
str,d+1 = f−1

f [−(dt − Aidxi)2 + (dxd − Aidxi)2 + (fp − 1)(dt − dxd)2] + dx2
d−1

e2Φd+1 = g2 f−1
f ,

Btd = −(f−1
f − 1),

Bti = −Bdi = f−1
f Ai, (A.1)
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where i = 1, 2, . . . , d − 1, and12

ff (x) = 1 +
Qf

L

∫ L

0

dv

|x− F(v)|d−3
,

fp(x) = 1 +
Qf

L

∫ L

0

|Ḟ(v)|2dv

|x− F(v)|d−3
,

Ai(x) = −Qf

L

∫ L

0

Ḟi(v)dv

|x− F(v)|d−3
. (A.2)

The dot denotes derivative with respect to v, and L = 2πwRd. We also define

Qp ≡ Qf

L

∫ L

0
|Ḟ(v)|2dv . (A.3)

For large |x|, ff − 1 and fp − 1 fall off as Qf/|x|d−3 and Qp/|x|d−3 respectively. By

computing the flux of the gauge fields associated with Gdµ and Bdµ at infinity, one finds

that the relations between Qf , Qp and quantized charges n,w are

Qf =
16πGdRd

(d − 3)Ωd−2α′
w, Qp =

16πGd

(d − 3)Ωd−2Rd
n, (A.4)

where ΩD is the area of SD and Gd is the d-dimensional Newton constant:

16πGd =
16πGd+1

2πRd
=

(2π)d−3g2α′(d−1)/2

Rd
. (A.5)

In order to arrive at (A.4), (A.5) we have used the fact that in the absence of higher

derivative corrections, which are irrelevant in the asymptotic region, the action has the

form given in (3.1)–(3.3). By examining the asymptotic form of the metric and the results

of [58] one also sees that the angular momentum associated with the solution in the xi-xj

plane is given by

Jij =
(d − 3)Ωd−2

16πGd

Qf

L

∫ L

0
(FiḞj − FjḞi)dv . (A.6)

Before considering the small black ring solution, let us first consider the case with a

circular profile:

F = F(0),

{
F

(0)
1 + iF

(0)
2 = Reiωv,

F
(0)
3 = · · · = F

(0)
d−1 = 0,

ω =
2πQ

L
=

Q

wRd
. (A.7)

This corresponds to a fundamental string which winds Q times along the ring of radius R

in the x1-x2 plane [48, 59]. Introducing the coordinate system (s, ψ,w, ~ξ ) by

x1 = s cos ψ, x2 = s sin ψ,

x3 = w ξ1, x4 = w ξ2, . . . , xd−1 = w ξd−3
d−3∑

a=1

(ξa)2 = 1, (A.8)

12The relation to the harmonic functions in [48, 36] is ff = H−1, fp = K + 1.
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the harmonic functions in (A.2) are computed as

ff = 1 + Qf (s2 + w2 + R2)−
d−3
2 2F1

(
d−3
4 , d−1

4 ; 1; 4R2s2

(s2+w2+R2)2

)
,

fp = 1 + Qp(s
2 + w2 + R2)−

d−3
2 2F1

(
d−3
4 , d−1

4 ; 1; 4R2s2

(s2+w2+R2)2

)
, (A.9)

Aψ = −(d−3
2 )qR2s2(s2 + w2 + R2)−

d−1
2 2F1

(
d−1
4 , d+1

4 ; 2; 4R2s2

(s2+w2+R2)2

)
,

where we have defined

q ≡ Qfω (A.10)

and 2F1(α, β; γ; z) denotes the hypergeometric function. For odd d, the hypergeometric

functions in (A.9) can be written as rational functions, while for even d they involve elliptic

integrals. Furthermore, from (A.3),

Qp = QfR2ω2. (A.11)

Using (A.10) and the last equation of (A.7), one finds

q =
16πGd

(d − 3)Ωd−2α′
Q . (A.12)

Moreover, from (A.6) one finds that the solution carries an angular momentum J = QR2/α′

in the x1-x2 plane. This gives

R2 = α′ J

Q
. (A.13)

From (A.4), (A.11), (A.13), and the last equation of (A.7), we obtain

JQ = nw, (A.14)

i.e., the circular configuration (A.7) saturates the Regge bound.

Now let us proceed to construct the small black ring solution. This can be done by

taking the profile function to be [49]

F = F(0) + δF, (A.15)

where δF describes fluctuations around F(0), whose detailed form is irrelevant as long as it

satisfies certain conditions to be explained below. As the simplest example, take δF to be

δF1 + i δF2 = a ei(νv+b), (A.16)

where we eventually take the limit

a

R
→ 0,

ν

ω
→ ∞, aν : fixed. (A.17)
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In other words, δF of (A.16) represents a very small-amplitude (a ¿ R), high-frequency

(ν À ω) fluctuation. Because of the first condition in (A.17), F in the denominators in the

integrand of (A.2) can be replaced by F(0). Now expand this denominator as

|x− F(0)|−(d−3) = [s2 + w2 + R2 − 2sR cos(ωv − ψ)]−
d−3
2 (A.18)

= (s2 + w2 + R2)−
d−3
2

∞∑

k=0

1

k!

Γ(d−3
2 + k)

Γ(d−3
2 )

[
2sR cos(ωv − ψ)

s2 + w2 + R2

]k

.

On the other hand, in the numerator, e.g. for fp, we have

|Ḟ|2 = |Ḟ(0) + δḞ|2 = R2ω2 + a2ν2 + 2Rωaν cos[(ω − ν)v − b]. (A.19)

When we multiply (A.19) and (A.19), and integrate it over v, there will be nonvanishing

contributions only when the frequencies of the cosines in (A.19) and (A.19) cancel each

other, which happens only for k & ν
ω . Since ν

ω → ∞ in the limit (A.17), in fact there is no

contribution from the last term in (A.19). Similarly, there is no contribution from δF to

Ai in (A.2); only F(0) contributes.

At the end of the day, the only effect of introducing the fluctuation (A.16) is to change

eq. (A.11) to

Qp = Qf (R2ω2 + a2ν2), (A.20)

whereas other expressions (A.9), (A.12) and (A.13) are unchanged. These give the super-

gravity small black ring solution we were after. Note that eqs. (A.4), (A.20), (A.13), and

the last equation of (A.7) now imply the Regge bound,

JQ < nw. (A.21)

Even if one considers more complicated fluctuations than (A.16) by taking linear combi-

nations of many modes in all the xi directions (1 ≤ i ≤ (d − 1)), the above results remain

unchanged as long as the condition (A.17) is met for each mode, except that the a2ν2 term

in (A.20) will be replaced by a sum over the contribution from all the modes. The fact that

the resulting solution (A.9) is insensitive to the precise form of the fluctuation δF is the

reflection of the fact that this supergravity small black ring represents all the underlying

microstates whose entropy is given by (1.3).

Although in (A.9) we presented the small black ring solution in the (s, ψ,w, ~ξ ) coordi-

nate system, it is more convenient for the analysis in the main text to go to the coordinate

system (y, ψ, x, ~ξ ) defined by

s =

√
y2 − 1

x − y
R, w =

√
1 − x2

x − y
R, −1 ≤ x ≤ 1, −∞ < y ≤ −1. (A.22)

In terms of these coordinates, the harmonic functions (A.9) become

ff = 1 +
Qf

Rd−3

(
x−y
−2y

)(d−3)/2

2F1

(
d−3
4 , d−1

4 ; 1; 1 − 1
y2

)
,

fp = 1 +
Qp

Rd−3

(
x−y
−2y

)(d−3)/2

2F1

(
d−3
4 , d−1

4 ; 1; 1 − 1
y2

)
, (A.23)

Aψ = −
(

d−3
2

) q
Rd−5

(y2−1)(x−y)(d−5)/2

(−2y)(d−1)/2 2F1

(
d−1
4 , d+1

4 ; 2; 1 − 1
y2

)
,
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and the (d − 1)-dimensional flat metric dx2
d−1 can be written as

dx2
d−1 =

R2

(x − y)2

[
dy2

y2 − 1
+ (y2 − 1)dψ2 +

dx2

1 − x2
+ (1 − x2)dΩ2

d−4

]
. (A.24)

Eqs. (A.1), (A.23) and (A.24), together with the definitions of various parameters given

in (A.4), (A.5), (A.12) and (A.13), describe the supergravity small black ring solution.

Note that once the solution has been obtained this way, we can forget about how it was

constructed, and simply analyze its properties by treating this as a singular solution of the

supergravity equations of motion. This is the view point we have adopted in section 3.
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